




The Burroughs FMP Machine

Jacob T. Schwartz

Ultracomputer Note #5

January 9, 1980

1. Introduction

This note will comment on various interesting points which appear in the

Burroughs Corporation final technical report NAS2-9897, March 1979, entitled

Numerical Aerodynamic Simulation Facility Feasibility Study.

I divide my review into the following 5 headings:

(1) The data movement algorithm of the interconnection network (cf. Section

5.7, Appendix B, Appendix H).

(2) Physical structure of the interconnection network; timings (cf. p. 5.40-5.57,

Appendix B (p. 14-25).

(3) Programming style (cf. Chapter 4, especially 4.2.2.3-4.2.2.5, 4.2.2.10,

Appendix A, Appendix G).

(4) Applications benchmarked (cf. Chapter 3, Appendix A).

(5) Reliability considerations (cf. Chapter 6, csp. sections 6.1.3, 6.1.5).

2. The Data-movement Algorithm of the Interconnection Network

The Burroughs FMP machine is very close to a 512 processor ultracomputer,

but involves an interesting engineering/algorithmic idea for realizing dynamically

generated permutations rapidly without pre-analysis. The key idea is as follows:

let a permutation n -
p^^ be given. Then attempt to move n into position p^^, using

essentially the technique currently employed for packing. That is, examine the

bits of n and p^^ in sequence (for which purpose a sequence of shuffles is

employed, in the ordinary way). Where these bits differ on the k-th cycle, move
n to adjust its k-th bit. Since no two items are allowed to move into the same
position, contention will sometimes develop between pairs of processors. Thus,

the rule must be:

(1) Take a pair of integers n, n' differing only in their k-th bit; call n (resp.p^^

k-wrong if the k-th bit of n differs from the k-th bit of p (resp. p ').

(2) (Cycle in parallel through the bits of each n in the usual way using shuffles.)

If (on the k-th cycle) both n and n' arc k-wrong, then intcrchang n and n'





between p and p '. If neither n nor n' is k-wrong, do not interchange. If
• n • n

just one of the two items n, n' is k-wrong, do not interchange, but change

the k-wrong item to nil.

(3) If both items of a pair arc nil, then do not interchange. If only one item is

nil, then interchange if the non-nil item is k-wrong, otherwise do not inter-

change.

Let the permutation p be selected at random, and suppose that on the k-th

cycle of the above iteration a fraction x^ of the data items being permuted

remains non-nil. An item I will be nilled only if it belongs to a pair of items nei-

ther of which is nil, and only I is k-wrong and its partner is not. The probability

of this event is Xj^
2 1 1 1 2

so that X, satisfies the recursive rule

^k+l - ^k
~ 1

4
Xi(.

The sequence generated by this recurrence is:



number of



number of



shuffle step would require roughly approximately 70-80 ns., and thus is probably

not advantageous in face of the greater logical generality provided by the FMP's

'full permutation' scheme. This indicates that the shuffle network and its associ-

ated algorithms can be hidden at what is in effect a 'microcode level' within the

parallel computer, making it possible for the user to think in terms of a simpler, any-

processor-to-any-memory-box 'machine level' logic.

An eclectic scheme might provide very fast nearest-neighbor commimication

based on sharing of registers between nearest neighbors, plus the FMP scheme for

remoter data communication.

4. Programming Style

Burroughs proposes a FORTRAN-based programming approach, with only a

few dictions added to FORITIAN. The dictions added are a parallel

DOALL/ENDDO loop construction and a rather crude structure declaration.

Statements within the body of a DOALL are executable in parallel, and the

DOALL body is simply executed by all available processors until all its (logically

independent) iterations have been accomplished.

Public data (as distinct from data private to a particular processor) is avail-

able to all processors during a DOALL, but results are written back to the public

area only at the end of the DOALL.

Assuming that the switch performs well, all that is necessary to achieve effi-

ciency within a DOALL is to ensure that the memory accesses are distributed as

imiformly as possible over the memory modules provided.

Our aurent ultracomputer algorithms could all be written as DOALLS, and

would have the property that neither interconnection network contention nor

memory contention ever developed. This is a reasonable approach for algorithms

involving any significant amount of floating point arithmetic. Simpler data

motion and communication algorithms (including permutation, packing, summing,

and sorting) might better be built into the underlying, micro-coded hardware, and

appear to the ordinary user as a set of machine-level primitives, some of which

will be discussed below.

Code outside of DOALLS is strictly sequential, and is executed by just one

processor. The machine can therefore be regarded as a sequential machine capa-

ble of executing DOALLS at 512 times its normal rate. This suggests timesharing

the parallel hardware among a number of sequential processors, to ensure that

enough DOALLS to keep the parallel hardware busy are always available.

Major synchronization points occur precisely where arrays are updated. This

suggests a generalized programming approach in which synchronization is

required only at those points at which public scalar quantities or arrays are modi-

fied. In such a style, the synchronization point could be indicated simply by a

pair of rudimentary SYNC commands, which would hold up early-arrivers until

Page 5



all processors had executed it. Then the characteristic of DOALL construct

would simply be that it partitions a certain iterative mass of computational work

(initially written as a group of independent iterations) statically, using the fact

that the nimiber of processors available is known, so that the iterative work can

simply be partitioned in to 512 parts, and executed independently by the proces-

sors, which have only to go thru the loop by steps of 512, synchronizing on exit.

Suppose that a DOALL is used to modify a PUBLIC array A, which for sim-

plicity we suppose to be a simple linear array of dimension 512*K. Then within

the body of the DOALL the new values of A would be stored in a (implicit tem-

porary) PRIVATE array A' of dimension K, which might be called the 'shadow'

of A. Upon exit from DOALL, A' would be transmitted to A. The code for this

can be written using the SYNC primitive and an ordinary FORTRAN DO-loop

simply as:

SYNC
DO 1 J = MYID, 512*K, 512

1 A(J) = A'(J)

SYNC

Note that with a bit more hardware, the more general programming style of

the earlier Draughon-Stein-Schwart-Grishman work on parallel computation (see

Programming Considerations for Parallel Computers, NYU Courant Institute Tech.

Report IMM 362, November 1967; Individual and Multi-Processing Performance

Characteristics of Programs on Large Parallel Computers, IMM 380, April 1970)

can be made available. The semantic primitives employed in that report are as

follows:

(1) PUBUC and PRIVATE variables

(2) A primitive function operating on halfword (or even two-byte) integers,

which appears in FORTRAN as NEWVAL (I,J). As described in IMM 362,

'This function has the value I + J. Moreover, each time it is called, it

changes the value of I to I + J. If several processors call this function simul-

taneously, the effect is the same as if these processors called the function in

some serial order.'

Quantities I addressed by NEWVAL will ordinarily be PUBLIC and used for

semaphoring, for distribution of processors among control paths, and to control

busy-waits during SYNC-like operations. Hence such quantities may well be

accessed by many processors almost simultaneously, and it may be desirable to

give them a hzu^dware implementation which prevents contention problems from

developing. This can be done by a technique sketched just below, but since this

technique is relatively expensive one will probably want to do this for a limited

number of specially declared quantities, for which purpose the declaration

PUBUC SEMAPHORE
or simply

Page 6



SEMAPHORE
is suggested.

The following is a possible treatment of SEMAPHORE variables I at the

hardware level:

(1) Allow up to 512 such variables, packed one per memory box.

(2) Suppose first that such variables can only be addressed by the instruction

NEWVAL(I,J). (Note that J=0 gives a simple 'LOAD' instruction).

(3) Transmit all the instructions NEWVAL(I,J) issued on a single clock cycle to

a built-in ultracomputer (hidden, like the ultracomputer structure of the com-

munications network itself, at a 'microcoded', 'hardware' level.)

TTie identifier of the processor originating the command should be kept with

the command itself. Using the ultracomputer sorting algorithm, sort these

instructions by their distinction L Retrieve the value held in the location I,

and merge to place this value in front of the group of instructions with desti-

nation I (this can be done in time proportional to log N.) Then use the ultra-

computer summing algorithm (more precisely, summing by groups) to form

the partial sums of all J's associated with a given destination I. Reorder (by

'packing' and then by a communication step that can be done as rapidly as

'merging', i.e. in time O (log N)) to place the last sum in each group in prox-

imity with the associated destination address I. Next store to update the

semaphore cell I. Finally, re-sort to re-transmit to the address of originating

processor, thus delivering the NEWVAL (I,J) values to the processors.

This algorithm will require 2 sorting times (roughly 100 micro-cycles) plus an

overhead of roughly 50% for the various summing and merging substeps. A total

of 250 30 ns cycles, or 7.5 p.us, is therefore reasonable; this is equivalent to

roughly 12 standard mass memory accesses, or 20 floating point instructions. The

hardware needed would roughly equal that needed for a duplex communication

network.

Note however that only one semaphore is required to support the very simple

logic of the Burroughs DOALL construct, and that if only one is provided it can

be implemented rapidly and cheaply as a 512 way OR with result available to all

512 processors; this could be generated in 60 ns.

If the NEWVAL fimction is provided, then an unordered version of the

ultracomputer 'packing' algorithm reduces to the simple sequence

1 IF NEWVAL (Z,0) ^t o THEN GO TO 1

IF DATA^JLAG(I) i- THEN PACKED (NEWVAL(Z,1)) = DATA (I)

where Z should be a SEMAPHORE variable initiaUzed to zero.

By supporting the NEWVAL function in hardware, we make it possible for

the processors of the parallel computer to be used effectively in subgroups or

varying size, which might otherwise not be possible. Thus, NEWVAL is prob-

ably useful for the system flexibility which it provides.

Page?



In the present Burroughs scheme, the simplest external sign that a DOALL is

possible is simply the presence of a single DO or a nest of DOs in which no vari-

able (other than a DO index) appears on both left and right, and in which no

location is the target of an assignment in more than one instance.

5. Applications Benchmarked

A variety of aero and metorological applications supplied by NASA have

been benchmarked, apparently with very satisfactory results. (However, it is not

entirely clear that measurements of innermost loops gives an entirely fair picture

of the performance of a machine that favors inner loops so very strongly.)

Instruction rates of more than 1 gigaflop are reported, but with 50% falloff in a

less favorable weather application. However, analysis was by hand-compilation

and simulation only, without full machine simulation. Between 5 and 20 floating

point operation between non-PRIVATE memory references are projected, (32K
words of PRIVATE, and 64K words of PUBLIC memory per processor are pro-

vided.) Parallelism within innermost DOALLS depends in some cases on the fact

that a two-dimensional sub-grid of a 3-dimensional problem is being treated in

parallel. In another somewhat more favorable case, each processor can perform

an FFT independently within the innermost loop.

In all but the most favorable cases at least a bit of receding in the parallel

'FMP FORTRAN' is needed to push system utilization up.

The parallel FFT can be executed at about .5 gigaflops with the communica-
tions hardware provided (cf. pages A-62 thru A-64). Note that the more perfect

use of the perfect shuffle would only improve this by 20%. Thus, the cost of the

Burroughs data routing scheme in this, a particularly favorable ultracomputer

case, is quite modest.

6. Reliability Considerations

The bulk of the FMP hardware lies in its processing and memory units. The
communication network will be relatively small, especially if iteration is used

instead of implementing the data movement algorithm by fully imrolled hardware.

Reliability is therefore achieved by allowing defective processing units

(and/or memory units) to be switched out and replaced by spares. The units are

divided into 4 groups of 128 units each, and one spare, numbered 128, is pro-

vided per group. When a imit bca:)mes defective, each imit following it is logi-

cally shifted one position to the left, and the spare unit 128 becomes unit 127.

This only requires the ability to switch a unit between two adjacent connection-

network ports.

All data is tagged with (single error connecting, double error detecting)

correction bits. Thus, transient or hard errors on the communication network

Page 8



should show up immediately. If necessary, it should be possible to increase the

reliability of a quadruplexeid communication network simply by switching mal-

functioning nodes off. Since multiple data paths always exist, this should cause

only slight degradation in the communications service experienced by units which

use the deleted point communication network nodes. However, this point

deserves closer study.

7. Summary

Overall, the FMP design looks very attractive. Since it should be as easy to

program as a parallel computer can be, and since it scales up smoothly to allow

use of very Icirge number of processors, it may well set the pattern for the coming

generation of parallel machines, in much the same way that the Von Neumann'

architecture has typified the last 25 years. The degree to which the perfect shuf-

fle network used to accomplish data motion and the ultracomputer algorithms

naturally associated with this network become explicit will depend on detailed

engineering parameters: e.g., the relative physical sizes of the switching network

and the mass of processors surrounding it. Use of a superspeed technology to

realize the switching network may also impact the architecture. Switching times

which are small relative to end-to-end data delays and operation time will favor

the Burroughs approach. The relatively high-level programming approach which

the FMP allows, is, of course, a great advantage.

Page 9






